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Our final goal is to develop algorithms for ranking roller-coasters that can be employed in 

apps. Thus, we created two ranking algorithms for two different type of users: the casual explorer 

who just needs an objective ranking, and the professional who wants a personalized ranking 

optimized to their tastes. To do so, we utilized the dataset given to construct the methods. 

To correct for missing data, we designed Linear Iterative Imputation, a technique that uses 

linear regression to iteratively impute the features based on which useful features (statistically 

significant at 5%) are selected by the linear model to impute the value of the missing one. In our 

problem, we first imputed speed, as the variable in the constructed linear model, height, was 

present in all entries where speed is missing. Then we imputed length with the variables duration 

and speed, as now all the entries with missing length had duration and speed. We then repeat this 

to create 6 linear models that imputes the 6 variables in which there are missing values. Majority 

of our models achieve over R2 of 0.5, which exceeds greatly the R2 of 0 from mean imputation. 

After imputing the dataset, we grouped the descriptors of the rollercoaster into 3 groups: 

Thrill, Fundamental, and Inversion, based on their relations in the linear models identified above. 

The reason for clustering them is to reduce dimensionality in the comparisons conducted below, 

and improve ease of use for the app that we need to develop. 

With these 4 groups, we develop two algorithms: the first one, denoted General Roller-

coaster Ranking (GRR), uses a linear model to give a rating for each rollercoaster, with the 

variables normalized and the weights chosen to balance the importance of each variable group. 

We further corrected differences in construction methods to ensure fair comparisons. 

The second one, called the Personalized Rollercoaster Ranking (PRR), employs the Analytic 

Hierarchy Process (AHP). As roller-coaster ranking is indeed a very subjective process, we ask 

the user to enter his/her own preference of the 3 variable groups. Then using AHP we can devise 

personalized regression weights to use in GRR in order to achieve a final ranking.  

Based on our two algorithms, we developed our concept of the application that takes into 

account the casual and the enthusiast. In the first case, our baseline algorithm confirms the 

popularity of most highly ranked rollercoasters worldwide. In the second case, with the 

dimensionality reduction conducted above, we are able to expose a friendly interface to the 

enthusiast without overwhelming them with the potential levers they could move. The users are 

also able to limit the regions and the types of rollercoasters included in the ranking. 

This results in an application that is able to provide an accurate reflection of universal 

acclaim of rollercoasters in one click, or alternatively provide one with a personalized ranking 

with just 3 simple questions.  



Team #8992 Page 2 of 38 

 

 

 

 

Personalizing Rollercoasters 

 

Mathematical Models for the Ranking of Rollercoasters Worldwide 

                

     2018 HiMCM Problem A 

Team #8992 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



Team #8992 Page 3 of 38 

 

Table of Contents 
1. Introduction ........................................................................................................................................... 5 

2. Data and Imputation .............................................................................................................................. 6 

2.1 Introduction to Data and Preprocessing ........................................................................................ 6 

2.2 Variables ....................................................................................................................................... 7 

2.3 Assumptions .................................................................................................................................. 7 

2.4 Linear Iterative Imputation ........................................................................................................... 7 

2.4.1 Illustration of Linear Model Construction ............................................................................ 8 

2.4.2 Final Results ........................................................................................................................ 10 

3. General Rollercoaster Ranking (GRR) Model .................................................................................... 11 

3.1 The Approach .............................................................................................................................. 11 

3.2 Variables ..................................................................................................................................... 14 

3.3 Assumptions ................................................................................................................................ 15 

3.4 Results and Comparison.............................................................................................................. 15 

3.5 Sensitivity Analysis .................................................................................................................... 18 

3.5.1 Sensitivity Against 𝛽𝒕 ......................................................................................................... 18 

3.5.2 Sensitivity Against 𝛽𝒇 ........................................................................................................ 19 

3.5.3 Sensitivity Against 𝛽𝑰 ......................................................................................................... 20 

3.6 Strengths and Weaknesses .......................................................................................................... 21 

3.6.1 Strengths ............................................................................................................................. 21 

3.6.2 Weaknesses ......................................................................................................................... 21 

4. Personalized Rollercoaster Ranking (PRR) Model ............................................................................. 22 

4.1 The Approach .............................................................................................................................. 22 

4.2 Variables ..................................................................................................................................... 24 

4.3 Illustration of PRR ....................................................................................................................... 24 

4.4 Strengths and Weaknesses .......................................................................................................... 26 

4.4.1 Strengths ............................................................................................................................. 26 

4.4.2 Weaknesses ......................................................................................................................... 26 

5. News Release ...................................................................................................................................... 27 

New Way to find your favorite Rollercoaster! ........................................................................................ 27 

6. App Design and Development ............................................................................................................ 28 

6.1 Flowchart of App ........................................................................................................................ 28 

6.2 App Design ................................................................................................................................. 29 



Team #8992 Page 4 of 38 

 

7. Appendix ............................................................................................................................................. 32 

7.1 References ................................................................................................................................... 32 

7.2 Code ............................................................................................................................................ 33 

 



Team #8992 Page 5 of 38 

 

1. Introduction 
 

  

 Rollercoaster is an extremely popular form of entertainment worldwide. After the end of 

the first golden age of coasters in the 1930s, it was revived again starting in the 1980s, when 

there were only 145 coasters operating worldwide. Now, there are over 4000 coasters all around 

the globe. This of course begs the question, which is the best? 

  

 This problem has been studied by enthusiasts and industry alike for many years. Every 

year, there is a closely watched industry event – the Golden Ticket Awards that give out awards 

for the best rollercoaster ride around the world. Many individuals and websites have conducted 

polls or keep rankings of various rollercoasters all over the world. However, all of these awards 

are based on popularity and human rating, which is extremely subjective. This causes most of 

these rankings to have high personal bias based on individual likings of the rollercoasters. 

 

 Therefore, there is a need for an objective rollercoaster rating system in which the physical 

characteristics of the rollercoaster determines the rating of it. Moreover, the objective 

rollercoaster rating system would allow us to predict ratings of roller coasters when they are just 

coming out, without the need to wait for reviews to ramp up. However, at the end of the day, the 

fundamental purpose of rating rollercoasters is so that we could select ones we would enjoy, so it 

is quite clear that there is a strong need to listen to true experiences and preferences of people. 

What is less clear, however, is the degree of incorporation of “people’s experience/preference” 

into the model. Roughly, we can separate it into two levels: 

 

1. General Population Level: We only incorporate information about what the general 

population thinks is a good rollercoaster. This means that we would want our rating to 

correspond on the universally acclaimed rollercoasters, as doing elsewise would be 

contradicting the general view of the rollercoaster.  

 

2. Specific Individual Level: We incorporate personal tastes about what the individual thinks is 

important in a good rollercoaster. This is thus a “personalized” ranking and would have 

massive appeal due to its understanding of individual preferences. However, the drawback 

is that most people do not understand the technical details of rollercoasters, and thus asking 

them to explain the reasoning behind a good rollercoaster experience might be extremely 

difficult. 

 

Thus, we see that there are two levels of personal preference we can include, with arguments 

for/against both sides. It is clear that the “average” user would in fact benefit more from the first 

approach than the second one as he/she would be able to check the ranking without entering any 
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information, and vice versa for the enthusiast. Thus, to provide a good experience to both types 

of people, we thus construct two models that share the underlying mathematical basis, but 

incorporate the personal preferences in different ways to give rise to different algorithms. 

 

To construct these models, we would need data on the objective characteristics of the 

rollercoasters, which is provided in the dataset given. This dataset however, contains much 

missing data, and therefore before we can talk about the algorithm for ranking, we first need to 

develop a model for imputing the data, which we would explore in the next section. 

2.Data and Imputation 
 

2.1 Introduction to Data and Preprocessing 

We are given a dataset of 300 roller-coasters with 19 characteristics. Excluding the non-

informative statistics (Status, as every coaster included here is operating), and factors dealing 

with name and places, we are left with 12 statistics: Construction, Type, Year Opened, Height, 

Speed, Length, Inversions (Yes/No), Number of Inversions, Drop, Duration, G Force, and 

Vertical Angle.  

We identify that many statistics are missing, with in fact only the Construction, Type, Year, and 

Inversions statistics being fully present. We identify that Height is also only missing in one roller 

coaster – the Harbin Happy Angel Coaster. A deeper dive onto this specific coaster reveals that it 

is a very recent coaster that has only been in operation for less than a few months. As most of its 

statistics is missing, we decided to remove this coaster from this database – we do not believe 

that it could reliably imputed from other coasters as it utilizes “a new construction method” and 

is “a new concept”, according to Xinhua News.  

Thus, in the 299 coasters we are left with, the following is a table of the amount of missing 

entries in each column: 

Column Number of Entries with Missing Data 

Speed 4 

Length 4 

Drop 157 

Duration 75 

G Force 216 

Vertical Angle 208 

Table 1: Number of Missing Entries for Each Column 
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We see in Table 1 that both Speed and Length are almost fully known while Drop, G Force, and 

Vertical Angle are highly missing. To impute the values of these data, we utilize linear 

regression to iteratively impute these values, based on what variables is needed. We call this 

Linear Iterative Imputation.  

2.2 Variables 

Variable Symbol Name/Meaning 

𝒚𝒎 The missing variable that we want to predict 

𝒙𝒊 A potential covariate for imputing the missing 

variable 

𝜷𝒊 The coefficient for the potential covariate for 

imputing the missing variable 

 

2.3 Assumptions 

• We assume that the underlying true relations of these variables are linear 

 

Justification: It is hard to justify that the true underlying relationships between these 

variables are actually linear, but to be able to impute the data, we nevertheless need some 

assumption, and in this case a linear model is suffice as we show through our high accuracy. 

 

• We assume this dataset is a representative dataset of the entire set of rollercoasters 

 

Justification: If this dataset was not a representative dataset from the entire sample of 

rollercoasters, then the data that we are imputing might be biased or generate wrong relations 

due to how this sample was generated. In this case, we assume that the 200 rollercoasters we 

are given is not strongly skewed in any particular covariate. 

 

2.4 Linear Iterative Imputation 

To conduct Linear Iterative Imputation, we first need to understand what variables each missing 

variable need to predict it well. We do this by constructing linear models for each variable that 

has missing data against at most 9 statistics – all 12 identified statistics excluding Drop, G Force, 

and Vertical Angle are considered. These three are excluded due to the massive amount of 
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missing data. That is for every missing variable 𝑦𝑚, we select variables 𝑥1, 𝑥2, … , 𝑥𝑘 so that we 

have the model: 

𝑦𝑚 = 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑘𝑥𝑘 

To ensure that we are only selecting useful variables, we only keep variables 𝑥𝑖 that are 

significant on the 5% level.  

In the interest of clarity, we would only illustrate the process of building the model for one such 

variable as the process is similar for all variables.  

2.4.1 Illustration of Linear Model Construction 

We first run a standard linear regression for the variable Drop against all other variables, to 

reveal the following estimates of the coefficients and p-values: 

Variable Estimated Coefficient  𝒑-value 

Construction (Wood) -404.7 0.01 

Type (Inverted) -11.34 0.88 

Type (Sit Down) 1.620 0.89 

Type (Stand Up) 1.785 0.59 

Type (Wing) -8.585 0.99 

Year Opened -14.74 0.17 

Height 0.1579 1.12 * 10-6 

Speed 3.116 <1 * 10-16 

Length -0.001287 0.50 

Inversions (Yes/No) -9.996 0.12 

Number of Inversions 0.09277 0.93 

Duration 0.04418 0.38 

Table 2: Coefficients for First Linear Model for Drop 

We see that only Construction, Height, and Speed are significant. We then rerun the model with 

only these three variables: 

Variable Estimated Coefficient  𝒑-value 

Construction (Wood) -5.77 0.08 

Height 0.33804 1.69 * 10-11 

Speed 2.956 <1 * 10-16 

Table 3: Coefficients for Second Linear Model for Drop 

Now we see that the Construction variable is not significant on the 5% level. Therefore, by our 

criteria, we drop it further: 
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Variable Estimated Coefficient  𝒑-value 

Height 0.3513 2.67 * 10-12 

Speed 2.94 <1 * 10-16 

Table 4: Coefficients for Third Linear Model for Drop 

In Table 4 we see that both remaining variables are significant, and therefore, we define Height 

and Speed to be the useful variables in imputing Drop.  

The following table illustrates the variables identified in the final linear models: 

Missing Variable Useful Variables  𝑹𝟐 

Speed Height 0.696 

Length Duration, Speed 0.526 

Drop Speed, Height 0.954 

Duration Length, Construction 0.514 

G Force Length, Construction 0.477 

Vertical Angle G Force 0.233 

Table 5: Linear Models for Imputation 

We see that in most models, we manage to select only a few variables while retaining relatively 

high accuracy.  

Here there is one caveat: The final variable, Vertical Angle, cannot be accurately imputed by any 

of the 9 variables identified above. However, when we use G Force to regress against it, it is 

significant at the 5% level. Thus, even though the G Force and the Vertical Angle are both 

missing many entries, we decided to use the fitted relation between G Force and Vertical Angle  

 

Once we now have this set of relations, we can construct an ordering of imputation so that we 

can use these 6 models effectively. For example, we cannot impute Drop before Speed, as Speed 

is required to impute Drop. However, here we have a potential problem as to impute Length we 

need Duration but to impute Duration we need Length!  

Fortunately, for all the entries in which length is missing (which there are only 4), duration 

exists, so we can first use the existing duration to impute the length, and then use the fully 

complete length to impute the rest of the durations. 

Thus, a valid ordering is: 

𝑆𝑝𝑒𝑒𝑑 → 𝐿𝑒𝑛𝑔𝑡ℎ → 𝐷𝑟𝑜𝑝 → 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 → 𝐺 𝐹𝑜𝑟𝑐𝑒 → 𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝐴𝑛𝑔𝑙𝑒 

And we thus impute iteratively accordingly. This gives us a full dataset. 
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2.4.2 Final Results 

To illustrate the effectiveness of our imputation, we would show the correlation between the 

numeric variables in the 9 statistics before and after imputation. Ideally we would like the 

correlation to not change before and after imputation so that the data can be considered similar. 

The following graph is a plot of the correlation before the imputation (on the subset in which 

these statistics exist): 

 

Figure 1: Correlation of Variables before Imputation 

The next graph shows the correlation after Imputation; 
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 Figure 2: Correlation of Variables after Imputation 

One could see that these two graphs are very similar, which suggests that our imputation 

algorithm has done a good job of keeping the relations between the original variables intact.  

 

3.General Rollercoaster Ranking (GRR) 

Model 
 

3.1 The Approach 

Through the imputation process, we can see that the variables which form natural groups with 

each other due to the high relevance/correlation with each other. We can roughly see three 

groups: 

• Thrill (Speed, Drop, Height): As it is clear in Table 5, we can use Height to Impute Speed 

while using Height and Speed to impute Drop with high confidence. This implies that these 

variables share deep relationship with each other. It is quite clear that all of these variables 

define the excitement or more specifically the thrill of the ride: Drop, Height and Speed 

are what would commonly be used to define how extreme a ride is. Note that we did not 

artificially create this grouping – it fell out naturally from the imputation process. 
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• Fundamentals (Vertical Angle, G Force, Length, Duration): These 5 variables form a 

second group as can be seen through the high correlation between each variable in Figure 

2, and the linear model relations in Table 5. One could describe this group of variables as 

the fundamentals – these are characteristics that define the construction of the rollercoaster 

and is more hampered by the physical and engineering constraints than the first group. 

• Inversion (Number of Inversions, Inversions(Yes/No)): These 2 variables were not 

present in any linear model and they share high correlation with each other, as it is clear 

that one is merely a masked version of the other. Inversions on a rollercoaster is another 

common attraction point, but from Table 5 it is clear that it is in its own group and not 

highly related to the other descriptive variables. For the model, since Inversions (Yes/No) 

is just a masked version of the Number of Inversions statistic, we would only use Number 

of Inversions. 

 

Note here three variables have not been classified out of the 12 statistics: The Year of Opening, 

Construction and the Type of Ride. We would treat them individually, as reasoned below: 

• The year of opening had low correlation with any other variable and was not important in 

the linear model. Moreover, “when the ride was opened” should not be a factor in 

determining if a ride’s experience is good or not if the ride has been kept in good condition. 

Thus, we would remove this variable. 

• On the other hand the type of ride, on the other hand, might potentially impact people’s 

tastes based on individual preferences. However, as explained in the introduction, this 

model is only designed to capture general population trends and thus we would ignore it. 

• The construction variable is again a very subjective variable, with many articles arguing 

for and against the merit of a wood construction against a steel construction. It is generally 

accepted that the steel coasters have better statistics than the wood coasters due to physical 

capabilities of steel, however wood coasters often have a much more “thrilling” ride due 

to the wobbly nature of the track. We would consider this variable in the model, but in a 

separate way from the grouped variables above. 

 

Therefore, with these three groups, we can devise a linear model for a ranking, where the rating 

of a rollercoaster is 𝑟𝐺: 

𝑟𝐺 = 𝛽𝑡𝑥𝑠 + 𝛽𝑡𝑥𝑑𝑟 + 𝛽𝑡𝑥ℎ + 𝛽𝑓𝑥𝑣𝑎 + 𝛽𝑓𝑥𝑔 + 𝛽𝑓𝑥𝑙 + 𝛽𝑓𝑥𝑑 + 𝛽𝐼𝑥𝑛 

Where 𝑥𝑠 is the variable representing speed, 𝑥𝑑𝑟 drop, 𝑥ℎ height, 𝑥𝑣𝑎 vertical angle, 𝑥𝑔 G Force, 

𝑥𝑙 length, 𝑥𝑐 construction, 𝑥𝑑 duration, and 𝑥𝑛 number of inversions. The three coefficients 𝛽𝑡, 

𝛽𝑓 and 𝛽𝐼 are group coefficients that represent how important each group is, as identified above. 
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To make these three coefficients meaningful, we first need to scale the 𝑥 variables appropriately. 

For example, it is not appropriate for length to have the same coefficient as G force as the former 

takes values of thousands while the latter never exceeds 10. Thus, for each variable, we would 

first apply a scaling such that the mean of the variable in the dataset is 0, and the variance of it is 

1. The following is a table of the various means and variances of the variables: 

Variable Mean 𝝁 Variance 𝝈𝟐 

𝒙𝒔 59.5 264.4 

𝒙𝒅𝒓 129.3 5475.8 

𝒙𝒉 135.5 4408.6 

𝒙𝒗𝒂 77.1 55.71 

𝒙𝒈 4.18 0.21 

𝒙𝒍 3150.8 2102981 

𝒙𝒅 121.2 2139.5 

𝒙𝒏 2.21 6.75 

Table 6: Means and Variances for various Variables 

 

Thus, we would scale our variables so that we have: 

𝑥𝑖
′ =

𝑥𝑖 − 𝜇𝑖
𝜎𝑖

 

Where 𝜎𝑖 denotes the standard deviation (square root of variance) for variable 𝑖, and 𝜇𝑖 the mean 

for variable 𝑖. 

Therefore, in fact our rating equation is actually: 

𝑟𝐺 = 𝛽𝑡𝑥𝑠
′ + 𝛽𝑡𝑥𝑑𝑟

′ + 𝛽𝑡𝑥ℎ
′ + 𝛽𝑓𝑥𝑣𝑎

′ + 𝛽𝑓𝑥𝑔
′ + 𝛽𝑓𝑥𝑙

′ + 𝛽𝑓𝑥𝑑
′ + 𝛽𝐼𝑥𝑛

′  

Then, for this general model, we would assume that for the general population, the fundamentals 

are just as important as the thrill, which is more important than the number of inversions (as 

inversions are usually only pursued by enthusiasts). In accordance with the Analytic Hierarchy 

Process, we assign an overall weight of 5 to groups Thrill and Fundamentals, and a weight of 1 

to group Inversion. Then, we further correct the weights by the number of variables in each 

group to reach the individual coefficients:   

𝛽𝑡 =
5

3
          𝛽𝑓 =

5

4
        𝛽𝐼 = 1  

As there are 3 variables in the thrill group, 4 in the fundamentals group and only 1 in the 

inversion group. 
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Therefore, our rating model now becomes:  

𝑟𝐺 =
5

3
(𝑥𝑠

′ + 𝑥𝑑𝑟
′ + 𝑥ℎ

′ ) +
5

4
(𝑥𝑣𝑎

′ + 𝑥𝑔
′ + 𝑥𝑙

′ + 𝑥𝑑
′ ) + 𝑥𝑛

′  

Here, we have ignored the effect of different construction. As noted in Table 5, the construction 

has a major effect on the duration and G Force of the ride. Thus, to compare Steel and Wood 

rides fairly, we have to correct for it. The linear models suggests that using wood construction on 

average makes the duration of the ride 26.2 seconds shorter and decreases the G Force by 

0.7620. Thus, we correct by that amount in the Steel trains. Therefore, our final model is: 

{
 

 𝑟𝐺 =
5

3
(𝑥𝑠

′ + 𝑥𝑑𝑟
′ + 𝑥ℎ

′ ) +
5

4
(𝑥𝑣𝑎

′ + 𝑥𝑔
′ + 𝑥𝑙

′ + 𝑥𝑑
′ ) + 𝑥𝑛

′             for Wood Coasters

𝑟𝐺 =
5

3
(𝑥𝑠

′ + 𝑥𝑑𝑟
′ + 𝑥ℎ

′ ) +
5

4
(𝑥𝑣𝑎

′ + 𝑥𝑔
′ + 𝑥𝑙

′ + 𝑥𝑑
′ +

−0.7620

√0.21
+

−26.2

√2139.5
) + 𝑥𝑛

′             for Steel Coasters
 

 

3.2 Variables 

Variable Symbol Name/Meaning 

𝑥𝑠 Speed of the Rollercoaster 

𝑥𝑑𝑟 Drop length of the Rollercoaster (Feet) 

𝑥ℎ Height of the Rollercoaster (Feet) 

𝑥𝑣𝑎 Vertical Angle of the Rollercoaster 

𝑥𝑔 G Force of the Rollercoaster 

𝑥𝑙 Length of the Rollercoaster 

𝑥𝑑 Duration of the Rollercoaster 

𝑥𝑛 Number of Inversions on the Rollercoaster 

𝑥𝑠 Speed of the Rollercoaster 

𝑥𝑖
′ Scaled versions of the variables above 

𝜇𝑖
′ Mean of the variables above 

𝜎𝑖
′ Standard Deviation of the variables above 

𝜷𝒕 Linear coefficient for the Thrill Group 

𝜷𝒇 Linear coefficient for the Fundamentals Group 

𝜷𝑰 Linear coefficient for the Inversions Group 

𝒓𝑮 Rating for the Rollercoaster 
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3.3 Assumptions 

• We assume that the rating of the rollercoaster is a linear model of its respective variables. 

 

Justification: For most of the variables, more means better, and in a linear way. For example, 

a 5km rollercoaster is the “same amount of better” than a 4km rollercoaster as a 6km one is 

to a 5km one. However, arguably, there are variables such as g force and vertical angle that 

are physically constrained and should not be linear. However, in the interest of simplicity, we 

would assume they are linear in this model. It is further discussed in the Strengths and 

Weaknesses section. 

 

• We assume the coefficients within each respective group (Thrill, Fundamentals, Inversion) 

are the same 

 

Justification: It is conceivable that the coefficients can be different within these groups, 

especially among different people. However, our imputation showed strong correlation 

between these variables, suggesting that whenever one variable changes, the other does also. 

For example, when you go for a higher rollercoaster, the G Force you are experiencing most 

likely increases – which is quite intuitive. Thus, grouping them together is a justified 

decision, and has many benefits down the road in reducing complexity and enabling more 

complex processes to be added later, as shown in the PRR model. 

 

3.4 Results and Comparison 

Using the rating model identified above, our ranking results in the following. Note we extend our 

list from Top 10 as required by the question to Top 20 to achieve a more holistic comparison: 

Ride Rating 

Kingda Ka (USA) 0.994 

Formula Rossa (UAE) 0.872 

Top Thrill Dragster (USA) 0.598 

Red Force (Spain) 0.360 

Steel Dragon 2000 (Japan) -0.041 

Wildfire (Sweden) -0.070 

Superman: Escape from Krypton (USA) -0.073 



Team #8992 Page 16 of 38 

 

Leviathan (Canada) -0.176 

Fury 325 (USA) -0.201 

Lightning Rod (USA) -0.249 

Tower of Terror II (Australia) -0.262 

Goliath (USA) -0.272 

Wodan Timbur Coaster (Germany) -0.343 

Intimidator 305 (USA) -0.376 

El Toro (USA) -0.390 

T Express (South Korea) -0.394 

Beast (USA) -0.395 

Voyage (USA) -0.448 

Do-Dodonpa (Japan) -0.573 

Millennium Force (USA) -0.599 

Table 7: Top 20 Ranking of GRR 

 

We compare our results to two other ranking systems. The first ranking system is the 

Coasterbuzz rating system, which is an average of all submitted user ratings, and is thus a purely 

subjective rating mechanism. The top 20 in that are: 

Top 20 of Coasterbuzz 

Steel Vengeance 

Fury 325 

El Toro 

Lightning Rod 

Twisted Timbers 

Millenium Force 

Twisted Colossus 

Boulder Dash 

Wicked Cyclone 

Voyage 

Maverick 

Iron Rattler 

Superman The Ride 

Goliath 

Leviathan 

Ravine Flyer II 

Outlaw Run 

Mako 



Team #8992 Page 17 of 38 

 

Nemesis 

Phoenix 

Table 7: Top 20 Ranking of Coasterbuzz 

 

Coasterbuzz mainly has North American reader base, so it is not surprising that none of the 

foreign coasters in the top 20 we chosen are in the top list in Coasterbuzz. Out of the 12 

USA/Canadian coasters we chose, 7 also appeared in the top 20 list of Coasterbuzz, suggesting 

that we are able to replicate the preference of people towards rollercoasters with a purely 

objective basis. 

The second baseline we will compare to is Lifed.com ranking, which is an expert ranking. The 

top 20 list is: 

Top 20 of Lifed 

Bizarro 

Millennium Force 

El Toro 

Expedition GeForce 

Voyage 

Kingda Ka 

Intimidator 305 

Goliath 

Behemoth 

Nemesis 

Balder 

Top Thrill Dragster 

X2 

T Express 

Katun 

Boulder Dash 

Ravin Flyer 

Formula Rossa 

Maverick 

Nitro 

Table 8: Top 20 Ranking of Lifed 

 

Here we share 8/20 names, which again is a respectable percentage. We note that compared to 

this list, (in which the expert team is again US based) which has 4/20 rides outside of 
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USA/Canada, we contain 8/20 rides outside of Canada, suggesting a much more global reach 

while able to replicate many of the top opinions across the community. 

3.5 Sensitivity Analysis 

There are three parameters in our model: 𝛽𝑡, 𝛽𝑓 and 𝛽𝐼. Therefore, we would conduct sensitivity 

analysis against each of the parameters 

3.5.1 Sensitivity Against 𝜷𝒕 

We increase 𝛽𝑡 by 0.1 to test how does the ranking change with changing 𝛽𝑡. The New Top 20 

from our algorithm is: 

Top 20 after 𝜷𝒕 Change 

Kingda Ka (USA) 

Formula Rossa (UAE) 

Top Thrill Dragster (USA) 

Red Force (Spain) 

Superman: Escape from Krypton (USA) 

Steel Dragon 2000 (Japan) 

Leviathan (Canada) 

Fury 325 (USA) 

Tower of Terror II (Australia) 

Wildfire (Sweden) 

Intimidator 305 (USA) 

Lightning Rod (USA) 

Goliath (USA) 

El Toro (USA) 

Wodan Timbur Coaster (Germany) 

Do-Dodonpa (Japan) 

T Express (South Korea) 

Millennium Force (USA) 

Beast (USA) 

Voyage (USA) 

Table 9: Top 20 Ranking after 𝛽𝑡 Change 
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The italicized ranking shows the ranking where something has changed, and the new Top 20 

rides under this scenario are highlighted. We can see that even after a 10% change, there are no 

new rides coming into the Top 20, with others basically a slight reshuffling of the ranking. More 

importantly, the Top 4 did not even move, suggesting that their rankings are extremely robust 

against change. 

3.5.2 Sensitivity Against 𝜷𝒇 

We increase 𝛽𝑓 by 0.1 to test how does the ranking change with changing 𝛽𝑓. The New Top 20 

from our algorithm is: 

Top 20 after 𝜷𝒕 Change 

Kingda Ka (USA) 

Formula Rossa (UAE) 

Top Thrill Dragster (USA) 

Red Force (Spain) 

Steel Dragon 2000 (Japan) 

Superman: Escape from Krypton (USA) 

Leviathan (Canada) 

Wildfire (Sweden) 

Fury 325 (USA) 

Tower of Terror II (Australia) 

Lightning Rod (USA) 

Intimidator 305 (USA) 

Goliath (USA) 

Wodan Timbur Coaster (Germany) 

Beast (USA) 

T Express (South Korea) 

El Toro (USA) 

Voyage (USA) 

Coaster Through the Clouds (China) -- New 

Do-Dodonpa (Japan) 

Table 10: Top 20 Ranking after 𝛽𝑓 Change 

 

The italicized ranking shows the ranking where something has changed, and the new Top 20 

rides under this scenario are highlighted. We can see that even after a 10% change, there is only 1 

new ride coming into the Top 20, with others basically a slight reshuffling of the ranking. Again, 

the Top 4 did not even move, suggesting that their rankings are extremely robust against change. 
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3.5.3 Sensitivity Against 𝜷𝑰 

We increase 𝛽𝐼 by 0.1 to test how does the ranking change with changing 𝛽𝐼. The New Top 20 

from our algorithm is: 

Top 20 after 𝜷𝑰 Change 

Kingda Ka (USA) 

Formula Rossa (UAE) 

Top Thrill Dragster (USA) 

Red Force (Spain) 

Wildfire (Sweden) 

Steel Dragon 2000 (Japan) 

Superman: Escape from Krypton (USA) 

Leviathan (Canada) 

Goliath (USA) 

Fury 325 (USA) 

Lightning Rod (USA) 

Tower of Terror II (Australia) 

Wodan Timbur Coaster (Germany) 

Intimidator 305 (USA) 

El Toro (USA) 

T Express (South Korea) 

Beast (USA) 

Voyage (USA) 

Outlaw Run (USA) – New 

Do-Dodonpa (Japan) 

Table 11: Top 20 Ranking after 𝛽𝐼 Change 

 

The italicized ranking shows the ranking where something has changed, and the new Top 20 

rides under this scenario are highlighted. We can see that even after a 10% change, there is only 1 

new ride coming into the Top 20, with others basically a slight reshuffling of the ranking. Again, 

the Top 4 did not even move, suggesting that their rankings are extremely robust against change. 



Team #8992 Page 21 of 38 

 

3.6 Strengths and Weaknesses 

3.6.1 Strengths 

• The GRR model only uses objective factors and does not incorporate personal preferences. 

• The GRR model does not attempt to group variables together in an ad-hoc way. Instead, it 

employs the information from the Linear Iterative Imputation to create natural groupings 

of the variables. 

• The GRR model corrects for the differences between steel and wood coasters, and thus 

allow comparisons across these categories to be fair. 

• The model is linear, so that a scaling of the weights would not impact the final result. This 

is important in hierarchical decision models, as the scale of the weights itself does not mean 

anything, and thus should not affect the final ranking. 

3.6.2 Weaknesses 

• The GRR model does not capture any personal preferences, which means that it can only 

serve as a general ranking without the capability of correcting against different tastes. 

• The model does not try to consider interaction effects between different variables and only 

considers the original variables on a linear model; non-linear models might improve 

explaining of some factors. For example, G- Force can never exceed 2G due to human 

constraints – thus instead of using a linear model where the G Force seems like it could be 

extrapolated infinitely far, one might be better off using a model that tapers off at large 

values (such as logistic model). 

• The model focuses only on the specific factors that were given in the dataset and does not 

consider additional factors that are objective but could affect the rating/experience of a 

person – this includes information about the general park, the area, and the country. As 

such, Kingda Ka, which holds many top records, stays comfortably at the top even in our 

sensitivity tests. While it does appear in most top rollercoaster rankings, its position usually 

isn’t as stable as it may seem from our ranking, as the physical attributes of the ride might 

not be everything in determining a ranking of the best roller coaster. 
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4.Personalized Rollercoaster Ranking 

(PRR) Model 

4.1 The Approach 

With the GRR model detailed in the last section, we created a model that was able to grasp the 

ratings of top rollercoasters reasonably well. However, it was not flexible and could not adjust 

for personal preferences. Thus, in this section, we introduce a new layer based on the Analytic 

Hierarchy Process (AHP) that allows us to personalize the ranking.  

Let us first reproduce the general formula for the GRR from the last model: 

𝑟𝐺 = 𝛽𝑡𝑥𝑠
′ + 𝛽𝑡𝑥𝑑𝑟

′ + 𝛽𝑡𝑥ℎ
′ + 𝛽𝑓𝑥𝑣𝑎

′ + 𝛽𝑓𝑥𝑔
′ + 𝛽𝑓𝑥𝑙

′ + 𝛽𝑓𝑥𝑑
′ + 𝛽𝐼𝑥𝑛

′  

In the GRR, we took a specific combination of (𝛽𝑡, 𝛽𝑓 , 𝛽𝐼) based on the general population’s 

preference. However, it is clear that everyone could be different. Thus, to solve this problem, we 

would employ AHP to decide the coefficients for this model. 

We want to specifically highlight here that it is the grouping of the variables, powered by our 

imputation method that allowed us to utilize the AHP efficiently. If we directly utilized AHP on 

the 8 variables above, we would have to compare the relative importance of all pairs of the 8 

variables – that would be 28 pairs. Conscious that our algorithm is user-facing, it is infeasible to 

ask the user 28 questions just to get a personalized rollercoaster ranking. With 3 groups however, 

we only need to ask 3 comparative questions, which is much more feasible. 

The process of the PRR model is as followed: 

1. For each possible Pair (Thrill vs Fundamentals, Fundamentals vs Inversion, etc), we would 

ask the person to rate the relative importance of one to another based on the Fundamental 

Scale for Pairwise Comparisons, reproduced below. 
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Figure 3: Fundamental Scale Diagram 

2. Then, in the Criteria matrix below, we fill in the respective numbers. Here (𝑡, 𝑓) represents 

the relative importance of thrill to fundamentals, rated on the fundamental scale above. 

Similarly (𝑡, 𝐼) represents the relative importance of thrill to Inversions. 

 

𝐶 =

1 (𝑡, 𝑓) (𝑡, 𝐼)
1/(𝑡, 𝑓) 1 (𝑓, 𝐼)
1/(𝑡, 𝐼) 1/(𝑓, 𝐼) 1

 

3. After filling in the matrix, we calculate the principal normalized eigenvector of 𝐶 , 𝑣𝐶  . 

Denote the 3 values coordinates of the principal eigenvector as (𝑣𝐶1, 𝑣𝐶2, 𝑣𝐶3) . Then the 

weights for the linear model would be: 

 

𝛽𝑡 =
𝑣𝐶1
3
           𝛽𝑓 =

𝑣𝐶2
4
          𝛽𝐼 = 𝑣𝐶3 

4. Run the GRR Model with the specified combination and show the ranking. 

 

Note there is no Sensitivity Test nor Results section for this model as it innately depends on the 

input of the user to perform the ranking. For the general overview of how stable is the algorithm, 

one could see the sensitivity tests conducted in the GRR Model. 
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4.2 Variables 

We only list the additional new variables that appeared here: 

Variable Symbol Name/Meaning 

(𝒕, 𝒇) The relative importance of Thrill with respect to 

Fundamentals 

(𝒕, 𝑰) The relative importance of Thrill with respect to 

Inversions 

(𝒇, 𝑰) The relative importance of Fundamentals with 

respect to Inversions 

𝒗𝑪 The principal eigenvector of the Criteria Matrix 

𝒗𝑪𝟏, 𝒗𝑪𝟐, 𝒗𝑪𝟑 The three dimensions of the principal eigenvector 

𝑪 The Criteria Matrix (AHP) 

 

 

4.3 Illustration of PRR 

In this section, we would illustrate a particular case for using PRR. We would assume the 

answers to the questions are as below: 

• “What is the relative importance of Thrill to Fundamentals?” – “Thrill is extremely 

important compared to Fundamentals (9)” 

• “What is the relative importance of Fundamentals to Inversion?” – “Fundamentals is 

equally important compared to Inversion (1)” 

• “What is the relative importance of Thrill to Inversion” – “Thrill is extremely important 

compared to Inversion (9)” 

 

Here we are describing the profile of a person who is extremely thrill-seeking but is not 

really into inversions, and would prefer a balanced ride fundamentals with number of 

inversions. The matrix for him/her is thus: 

𝐶 =
1 9 9
1/9 1 1
1/9 1 1

 

The principle eigenvector is thus: 
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𝑣𝐶 =

(

 
 
 
 
9

√83
1

√83
1

√83)

 
 
 
 

 

Thus, our beta values are: 

𝛽𝑡 =
3

√83
           𝛽𝑓 =

1

4√83
          𝛽𝐼 =

1

√83
 

Then we run the GRR model, to produce the following ranking: 

Top 20 for PRR Run 

Kingda Ka (USA) 

Top Thrill Dragster (USA) 

Formula Rossa (UAE) 

Red Force (Spain) 

Superman: Escape from Krypton (USA) 

Tower of Terror II (Australia) 

Fury 325 (USA) 

Steel Dragon 2000 (Japan) 

Do-Dodonpa (Japan) 

Leviathan (Canada) 

Millenium Force (USA) 

Intimidator 305 (USA) 

Soaring Dragon & Dancing Phoenix (China) -- New 

Hyperion (Poland) -- New 

Eejanaika (Japan) -- New 

Coaster Through the Clouds (China) -- New 

Titan (USA) -- New 

Shambhala (Spain) -- New 

Outlaw Run (USA) – New 

Goliath (USA) 

Table 12: Top 20 Ranking for PRR 

Note that this ranking is vastly different from the original GRR ranking - There are 7 coasters 

appearing on the Top 20 list that did not appear below. Even the Top 4, which were extremely 

stable in the sensitivity tests, swapped orders as Top Thrill Dragster over took Formula 

Rossa. This is mainly due to the fact that Top Thrill Dragster has a height of 420m compared 
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to Rossa’s 171m, with similar speed and a higher drop. Thus, though Rossa’s ride is much 

longer, the thrill of the Top Thrill Dragster moved its place from third to second. 

4.4 Strengths and Weaknesses 

4.4.1 Strengths 

• The PRR model is able to capture significant personal preferences within 3 simple 

questions that the users need to answer. 

• It retains all of the desirable properties of the GRR Model (robustness, ease to use, etc) 

4.4.2 Weaknesses 

• The PRR model can only capture personal preferences on the two dimensions that we have 

defined – more granular personal preferences are lost in the process. 

• The PRR though solving one of the weaknesses of GRR by adding personal preferences, 

still retains most of the weaknesses of GRR. 
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5.News Release 
 

 

New Way to find your favorite Rollercoaster! 

Tired of deciding which rollercoaster is the best? Need some suggestions on what rollercoaster to 

next go to? With the efforts of the entire Team #8992, we have devised a new way to provide you 

all the answers!  

Unlike previous rankings which heavily relied on experts and/or personal ratings which are 

subject to much bias, we only use objective mathematical quantities, such as how long the ride 

is, how much force you would experience on the ride, what’s the maximum speed on the ride, 

etc. We then develop a model to use all of these features and provide a rating that is objective and 

reflects the true performance of these rollercoasters. 

If you want more, there is even a personalized ranking algorithm in which in just three questions, 

we would create a ranking that is suited just for you. This algorithm is asks you about the relative 

importance of different qualities of the ride to determine which ride would be best for you. Then 

it produces a personalized list that is unique for you. 

All of this is available in an easy to use app, along with other features such as region/type 

selection. 

Best 

-Team #8922 
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6.App Design and Development 
 

As requested in the question, we would design an app for people to check the current top 

rankings of the rollercoasters. As in the algorithm development, we have already thought 

about the two different type of users that would use this app, so we would prepare two 

workflows in the app to accommodate the two different types of users. 

6.1 Flowchart of App 

 

 As one could see above, there are two flows within the app. When you open the app, you 

would see two buttons – one for the general ranking, and one for the personalized ranking. If you 

choose general ranking, you would immediately see the general ranking of rollercoasters 
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worldwide as generated by the GRR Algorithm. You can then further limit your choices to 

specific regions or type of rollercoasters you would like to enjoy. 

If you choose the advanced path, then you would be prompted 3 AHP type questions as detailed 

in the PRR algorithm. Then the PRR Algorithm would calculate a ranking that adheres to your 

tastes. 

  

6.2 App Design 

To illustrate the app, we would show a few mockup of the screens. The home page would just be 

populated by two buttons as shown below: 

 

Figure 4: Home Screen 

 

These two buttons would take you down either the General Ranking Path or the Personalized 

Ranking path. If you choose the Advanced Mode (Personalized), then you get the following 

screen: 
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Figure 5: Questions 

Then after the user finish answering the questions, the ranking would appear: 
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Figure 6: Ranking 

The plus icon on the top side indicates that the user could add additional options to filter his 

ranking. This includes filtering by region, ride, and others.  
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7.Appendix 
 

7.1 References 

https://www.rcdb.com. 

 

https://www.ultimaterollercoaster.com/ 

 

https://coasterpedia.net/ 

 

https://abcnews.go.com/WNT/story?id=130111&page=1 

 

http://goldenticketawards.com/ 

 

https://www.lifed.com/top-25-best-roller-coasters-in-the-world/ 

 

https://coasterbuzz.com/ 

 

 

 

 

 

 

https://www.rcdb.com/
https://www.ultimaterollercoaster.com/
https://coasterpedia.net/
https://abcnews.go.com/WNT/story?id=130111&page=1
http://goldenticketawards.com/
https://www.lifed.com/top-25-best-roller-coasters-in-the-world/
https://coasterbuzz.com/
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7.2 Code for GRR and PRR 

library(tidyverse) 

library(lubridate) 

library(ggplot2) 

library(ggthemes) 

library(corrplot) 

comapdata=read_csv("COMAP_RollerCoasterData_2018.csv") 

comapdata$`Height (feet)`=as.numeric(comapdata$`Height (feet)`) 

ecdf1=ecdf(comapdata$`Height (feet)`) 

plot(ecdf1) 

qqnorm(comapdata$`Height (feet)`) 

 

comapdata$`G Force`=as.numeric(comapdata$`G Force`) 

ecdf1=ecdf(comapdata$`G Force`) 

plot(ecdf1) 

qqnorm(comapdata$`G Force`) 

 

comapdata$`Inversions (YES or NO)`[comapdata$`Inversions (YES or NO)`=="YES"]=1 

comapdata$`Inversions (YES or NO)`[comapdata$`Inversions (YES or NO)`=="NO"]=0 

comapdata$`Inversions (YES or NO)`=as.numeric(comapdata$`Inversions (YES or NO)`) 

comapdata$`Duration (min:sec)`=as.numeric(comapdata$`Duration (min:sec)`)/60 

comapdata$`Speed (mph)`=as.numeric(comapdata$`Speed (mph)`) 

ecdf1=ecdf(comapdata$`Speed (mph)`) 

plot(ecdf1) 

qqnorm(comapdata$`Speed (mph)`) 
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cor(comapdata[complete.cases(comapdata[,10:19]),10:19]) 

ggplot(comapdata, aes(x=`Height (feet)`, y=`Speed (mph)`)) + geom_point(color="blue") + 

theme_few()+geom_smooth(method="lm", se=TRUE, fullrange=FALSE, level=0.95) 

ggplot(comapdata, aes(x=`Length (feet)`, y=`Speed (mph)`)) + geom_point(color="blue") + 

theme_few()+geom_smooth(method="lm", se=TRUE, fullrange=FALSE, level=0.95) 

 

ggplot(comapdata, aes(x=`Duration (min:sec)`*`Speed (mph)`, y=`Length (feet)`)) + geom_point(color="blue") 

+ theme_few()+geom_smooth(method="lm", se=TRUE, fullrange=FALSE, level=0.95) 

 

 

lm1<-lm(`Speed (mph)`~`Height (feet)`,data=comapdata) 

 

lm2<-lm(`Length (feet)`~`Duration (min:sec)`:`Speed (mph)`,data=comapdata) 

 

lm3<-lm(`Drop (feet)`~`Speed (mph)`,data=comapdata) 

 

ggplot(comapdata, aes(x=`Number of Inversions`, y=`Drop (feet)`)) +  

  geom_point(color="blue") +  

  theme_few()+geom_smooth(se=TRUE, fullrange=FALSE, level=0.95) 

 

 

ggplot(comapdata, aes(x=`Length (feet)`/`Speed (mph)`, y=`Duration (min:sec)`)) +  

  geom_point(color="blue") +  

  theme_few()+geom_smooth(method="lm", se=TRUE, fullrange=FALSE, level=0.95) 

 

 

lm4<-lm(`Duration (min:sec)`~I(`Length (feet)`/`Speed (mph)`)+I(`Drop (feet)`/`Speed 

(mph)`)+Construction,data=comapdata) 
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comapdata=read_csv("COMAP_RollerCoasterData_2018_Fixed.csv")[1:299,1:19] 

 

lm5<-lm(GForce~Length+Construction,data=comapdata) 

 

length(lm5$fitted.values) 

comapdata$GForce=predict(lm5,newdata = comapdata) 

 

ggplot(comapdata, aes(x=`Length (feet)`, y=`G Force`)) +  

  geom_point(color="blue") +  

  theme_few()+geom_smooth(method="lm", se=TRUE, fullrange=FALSE, level=0.95) 

 

ggplot(comapdata, aes(x=`Length (feet)`, y=`Vertical Angle (degrees)`)) +  

  geom_point(color="blue") +  

  theme_few()+geom_smooth(method="lm", se=TRUE, fullrange=FALSE, level=0.95) 

 

 

lm6<-lm(Vangle~GForce,data=comapdata) 

 

comapdata$Vangle=predict(lm6,newdata = comapdata) 

write_csv(comapdata,"COMAP_RollerCoasterData_2018_Full.csv") 
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comapdata=read_csv("COMAP_RollerCoasterData_2018_Full.csv") 

comapdata[,11:19]=scale(comapdata[,11:19]) 

comapdata=comapdata[comapdata$Construction=="Steel",] 

# comapdata$Construction=as.numeric(factor(comapdata$Construction))-1 

comapdata$Construction=NULL 

comapdata$Status=NULL 

comapdata$Type=NULL 

comapdata$Year=NULL 

comapdata$IInversion=NULL 

comapdata$Park=NULL 

comapdata$District=NULL 

comapdata$City=NULL 

comapdata$Region=NULL 

 

weights=c(3/sqrt(83),1/(4*sqrt(83)),1/(sqrt(83))) 

coefs=c(weights[1]/3,weights[1]/3,weights[2]/4,weights[3],weights[1]/3,weights[2]/4,weights[2]/4,weights[2

]/4) 

ans=as.vector(data.matrix(comapdata[,3:10])%*%coefs)-weights[2]*(0.7620/sqrt(0.21)+26.2/sqrt(2139.5)) 

 

 

comapdata=read_csv("COMAP_RollerCoasterData_2018_Full.csv") 

comapdata[,11:19]=scale(comapdata[,11:19]) 

comapdatawood=comapdata[comapdata$Construction=="Wood",] 

# comapdata$Construction=as.numeric(factor(comapdata$Construction))-1 

comapdatawood$Construction=NULL 

comapdatawood$Status=NULL 
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comapdatawood$Type=NULL 

comapdatawood$Year=NULL 

comapdatawood$IInversion=NULL 

comapdatawood$Park=NULL 

comapdatawood$District=NULL 

comapdatawood$City=NULL 

comapdatawood$Region=NULL 

 

weights=c(3/sqrt(83),1/(4*sqrt(83)),1/(sqrt(83))) 

coefs=c(weights[1]/3,weights[1]/3,weights[2]/4,weights[3],weights[1]/3,weights[2]/4,weights[2]/4,weights[2

]/4) 

ans2=as.vector(data.matrix(comapdatawood[,3:10])%*%coefs) 

 

comapdata=read_csv("COMAP_RollerCoasterData_2018_Full.csv") 

comapdata$ans=0 

comapdata$ans[comapdata$Construction=="Steel"]=ans 

comapdata$ans[comapdata$Construction=="Wood"]=ans2 

 

 

 

corrplot(cor(comapdata[,10:19])) 

comapdataold=read_csv("COMAP_RollerCoasterData_2018.csv") 

colnames(comapdataold)<-colnames(comapdata) 

comapdataold$Height=as.numeric(comapdataold$Height) 

comapdataold$IInversion[comapdataold$IInversion=="YES"]=1 

comapdataold$IInversion[comapdataold$IInversion=="NO"]=0 

comapdataold$IInversion=as.numeric(comapdataold$IInversion) 



Team #8992 Page 38 of 38 

 

comapdataold$Duration=as.numeric(comapdataold$Duration)/60 

comapdataold$Speed=as.numeric(comapdataold$Speed) 

corrplot(cor(comapdataold[complete.cases(comapdataold[,10:17]),10:17])) 

corrplot(cor(comapdata[,10:19])) 

 

 

   
 


